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CHAPTER 1:
TYPES OF STRUCTURES AND LOADS

3



Chapter Outline

• 1.1 Introduction

• 1.2 Classification of Structures

• 1.3 Loads

• 1.4 Structural Design
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1.1
INTRODUCTION
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Introduction

• Structures refer to a system of connected parts used to support a load

• Factors to consider:
• Safety

• Esthetics

• Serviceability

• Economic & environmental constraints
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1.2
CLASSIFICATION OF STRUCTURES

7



Classification of Structures

• Structural elements
• Tie rods

• Beams

• Columns

• Types of structures
• Trusses

• Cables & Arches

• Surface Structures
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1.3
LOADS
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Loads

Loads

Structural forms

Elements carrying primary loads

Various supporting members

Foundation 
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Loads

• Design loading for a structure is often specified in codes
• General building codes

• Design codes
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Loads

• Types of load
• Dead loads

• Weights of various structural members

• Weights of any objects that are attached to the structure
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Loads

• Example 1.1

• The floor beam is used to support the 1.8 m width of a lightweight plain 
concrete slab having a thickness of 100 mm. The slab serves as a portion 
of the ceiling for the floor below & its bottom is coated with plaster. A 2.4 
m high, 300 mm thick lightweight solid concrete block wall is directly over 
the top flange of the beam. Determine the loading on the beam measured 
per m length of the beam.
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Loads

• Example 1.1 (Solution)

kN/m01.1588.1143.070.2Total

kN/m88.11)m3.0)(m4.2)(m/kN5.16( :block wall

m/kN43.0)m8.1)(m/kN24.0(  :ceilingplaster 

m/kN70.2)m8.1)(mm100)(mm•m/kN015.0(   :slab concrete
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Loads

• Types of load
• Live loads

• Varies in magnitude & location

• Building loads 
- Depends on the purpose for which the building is designed

- These loadings are generally tabulated in local, state or national code
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Loads

• Types of load
• Building loads

- Uniform, concentrated loads
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Loads

• Types of load
• Building loads

- Uniform, concentrated loads

roof.or  garage assembly, publicfor  used structuresfor or 
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Loads

• Types of load
• Highway Bridge loads

• Primary live loads are those due to traffic

• Specifications for truck loadings are reported in AASHTO

• For 2-axle truck, these loads are designated with H followed by the weight of truck in tons and 
another no. gives the year of the specifications that the load was reported
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Loads

• Types of load
• Railway Bridge loads

• Loadings are specified in AREA

• A modern train having a 320 kN loading on the driving axle of the engine is designated as 
an E-72 loading
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Loads

• Types of load
• Impact loads

• Due to moving vehicles 
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Loads

• Types of load
• Wind loads

• Kinetic energy of the wind is converted into potential energy of pressure when 
structures block the flow of wind

• Effect of wind depends on density & flow of air, angle of incidence, shape & stiffness of 
the structure & roughness of surface

• For design, wind loadings can be treated using static or dynamic approach
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Loads

• Types of load
• Snow loads

- Design loadings depend on building’s general shape & roof geometry, wind exposure, 
location, its importance and whether or not it is heated

- Snow loads are determined from a zone map reporting 50-year recurrence intervals of 
an extreme snow depth

22



Loads

• Types of load
• Earthquake loads

- Earthquake produce loadings through its interaction with the ground & its response 
characteristics

- Their magnitude depends on amount & type of ground acceleration, mass & stiffness of 
structure
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Loads

• Types of load
• Hydrostatic & Soil Pressure

• The pressure developed by these loadings when the structures are used to retain water 
or soil or granular materials

• E.g. tanks, dams, ships, bulkheads & retaining walls

• Other natural loads
• Effect of blast

• Temperature changes

• Differential settlement of foundation
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1.4
STRUCTURE DESIGN
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Structure Design

▪ Material uncertainties occur due to
- variability in material properties

- residual stress in materials

- intended measurements being different from fabricated sizes

- material corrosion or decay

▪ Many types of loads can occur simultaneously on a structure
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Structure Design

▪ In working-stress design, the computed elastic stress in the material 
must not exceed the allowable stress along with the following typical 
load combinations as specified by the ASCE 7-10 Standard
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Structure Design

▪ In strength design is material uncertainty and load uncertainty are 
separately determined

▪ This method uses load factors applied to the loads or combination of 
loads

- 1.4 (Dead load)

- 1.2 (dead load) + 1.6 (live load) + 0.5 (snow load)

- 0.9 (dead load) + 1.0(wind load)

- 0.9 (dead load) + 1.0 (earthquake load)

28



HW 1-1

Ans=162 KN
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HW 1-2

Ans=60.48 KN
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HW 1-3

Ans=5.45 KN/m 
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CHAPTER 2:
ANALYSIS OF STATISCALLY DETERMINATE STRUCTURES
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Chapter Outline

2.1 Idealized Structure

2.2 Principle of Superposition

2.3 Equations of Equilibrium

2.4 Determinacy and Stability

2.5 Application of the Equations of Equilibrium
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2.1
IDEALIZED STRUCTURE
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Idealized Structure

▪ To develop the ability to model or idealize a structure so that the structural 

engineer can perform a practical force analysis of the members

▪ Support Connections

- Pin connection (allows some freedom for slight rotation)

- Roller support (allows some freedom for slight rotation)

- Fixed joint (allows no relative rotation)
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Idealized Structure
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Idealized Structure
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Idealized Structure

▪ Support Connections

- In reality, all connections exhibit some stiffness toward joint rotations 

owing to friction & material behavior

- If k = 0, the joint is pin, and if k -> , the joint is fixed

- When selecting the model for each support, the engineer must be aware 

of how the assumptions will affect the actual performance

- The analysis of the loadings should give results that closely approximate 

the actual loadings

7



Idealized Structure

▪ Support Connections

- In reality, all supports 

actually exert distributed 

surface loads on their 

contacting members
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Idealized Structure

▪ Idealized Structure

- Consider the jib crane & trolley, we neglect the thickness of the 2 main 

member & will assume that the joint at B is fabricated to be rigid

- The support at A can be modeled as a fixed support
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Idealized Structure

▪ Idealized Structure

- Consider the framing used to support a typical 

floor slab in a building 

- The slab is supported by floor joists located at even intervals

- These are in turn supported by 2 side girders AB & CD
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Idealized Structure

▪ Idealized Structure

- For analysis, it is reasonable to assume that the joints are pin and/or 

roller connected to girders & the girders are pin and/or roller connected 

to columns
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Idealized Structure

▪ Tributary Loadings

- There are 2 ways in which the load on surfaces is transmitted to various 

structural elements

1. 1-way system

2. 2-way system
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Idealized Structure

▪ Tributary Loadings

1. 1-way system
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Idealized Structure
▪ Tributary Loadings

2-way system
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Idealized Structure

Case 2: L1
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Idealized Structure

▪ Tributary Loadings

1. 2-way system
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Idealized Structure 

Example 2.1

The floor of a classroom is to be supported by the bar joists as shown. Each 

joist is 4.5 m long and they are spaced 0.75 m on centers.

The floor itself is to be made from lightweight concrete that is 100 mm thick. 

Neglect the weight of the joists and the corrugated metal deck, and 

determine the load that acts along each joist.
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Idealized Structure 

Example 2.1 (Solution)

kN/m57.2)m75.0(kN/m42.3

 length, its along load Uniform

slabway -12/

m5.4m,75.0
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kN/m92.1  load Live

kN/m50.1
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HW 2-1

The steel framework is used to support the reinforced stone concrete

slab that is used for an office. The slab is 200 mm thick. Sketch the

loading that acts along members BE and FED. Take a = 2 m, b = 5 m.

Hint: See Tables 1.2 and 1.4.

Ans. BE: 14.2 kN/m        

FED: 35.6 kN at E 
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2.2
PRINCIPLE OF SUPERPOSITION
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Principle of Superposition

▪ The total disp. or internal loadings (stress) at a point in a structure 

subjected to several external loadings can be determined by adding 

together the displacements or internal loadings (stress) caused by each of 

the external loads acting separately

▪ Linear relationship exist among loads, stresses & displacements

▪ 2 requirements for the principle to apply:

- Material must behave in a linear-elastic manner, Hooke’s Law is valid

- The geometry of the structure must not undergo significant change when 

the loads are applied, small displacement theory
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2.3
EQUATIONS OF EQUILIBRIUM
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Equations of Equilibrium

• For equilibrium:

• For most structures, it can be reduced to:
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2.4
DETERMINACY AND STABILITY
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Determinacy and Stability

▪ Determinacy

- Equilibrium equations provide both the necessary and sufficient conditions 

for equilibrium

- All forces can be determined strictly from these equations 

- No. of unknown forces > equilibrium equation => statically indeterminate

- This can be determined using free body diagrams
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Determinacy and Stability

▪ Determinacy

- For a coplanar structure

- The additional equations needed to solve for the unknown equations are 

obtained as compatibility equations 

   ateindetermin statically     ,3

      edeterminat statically     ,3

nr

nr



=
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Determinacy and Stability

Example 2.4

Classify each of the beams as statically determinate or statically 

indeterminate. If statically indeterminate, report the number of degrees of 

indeterminacy. The beams are subjected to external loadings that are 

assumed to be known and can act anywhere on the beams.
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Determinacy and Stability

Example 2.4 (Solution)

( )133,1,3 === nr

( )135,1,5 == nr

Statically determinate

Statically indeterminate to 
the second degree
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Determinacy and Stability

Example 2.4 (Solution)

( )236,2,6 === nr

( )3310,3,10 == nr
Statically indeterminate to the first degree

Statically determinate
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Determinacy and Stability

Example 2.5

Classify each of the pin-connected structures as statically determinate or 

statically indeterminate. If statically indeterminate, report the number of 

degrees of indeterminacy. The structures are subjected to arbitrary external 

loadings that are assumed to be known and can act anywhere on the 

structures.
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Determinacy and Stability

Example 2.5 (Solution)

67,2,7 == nr Statically indeterminate to the first degree

99,3,9 === nr
Statically determinate
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Determinacy and Stability

Example 2.5 (Solution)

610,2,10 == nr

99,3,9 === nr

Statically indeterminate to the fourth degree

Statically determinate
32



Determinacy and Stability

▪ Stability

- To ensure equilibrium of a structure or its members:

➢Must satisfy equations of equilibrium

➢Members must be properly held or constrained by their supports
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Determinacy and Stability

▪ Partial constraints

- Fewer reactive forces than equations of equilibrium

- will not be satisfied

- Member will be unstable

0= xF
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Determinacy and Stability

▪ Improper constraints

- In some cases, unknown forces may equal equations of equilibrium in 

number

- However, instability or movement of structure could still occur if support 

reactions are concurrent at a point
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Determinacy and Stability

▪ Improper constraints

- Rotation about O will take place

- Similarly instability can occur if all reactive forces are parallel

0Pd
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Determinacy and Stability 

Example 2.7

Classify each of the structures as stable or unstable. The structures are 

subjected to arbitrary external loads that are assumed to be known.
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Idealise Structure 

Example 2.7 (Solution)

Unstable

Stable, 

statically determine
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Idealise Structure 

Example 2.7 (Solution)

Unstable

Unstable
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HW 2-2

Classify each of the structures as statically determinate or indeterminate. If

indeterminate, specify the degree of indeterminacy
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2.5
APPLICATION OF THE EQUATIONS OF EQUILIBRIUM
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Application of the Equations of Equilibrium

▪ Consider 3-member frame subjected to loads P1 & P2 

▪ There are 9 unknowns in total

▪ 9 equations of equilibrium can be written, 3 for each member

▪ It is statically determinate
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Application of the Equations of Equilibrium 

Example 2.8

Determine the reactions on the beam as shown.

43



Application of the Equations of Equilibrium 

Example 2.8 (Solution)

kN4.60

04.17360sin270  ;0

kN4.173

05.67)2.4()3.0(60cos270)3(60sin270  ;0

 direction,  in the moments clockwise-antiWith 

kN135

060cos270  ;0
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Application of the Equations of Equilibrium 

Example 2.11

The compound beam shown is fixed at A. Determine the reactions at A, B, 

and C. Assume that the connection at B is a pin and C is a roller.
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Application of the Equations of Equilibrium 

Example 2.11 (Solution)
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Application of the Equations of Equilibrium 

Example 2.11 (Solution)

0  ;0

kN78.1   078.1  ;0

kN78.1    0)5.4(8  ;0
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Application of the Equations of Equilibrium 

Example 2.13

The side of the building is subjected to a wind loading that creates a uniform 

normal pressure of 15 kPa on the windward side and a suction pressure of 5 

kPa on the leeward side. Determine the horizontal and vertical components 

of reaction at the pin connections A, B, and C of the supporting gable arch.
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Application of the Equations of Equilibrium 

Example 2.13 (Solution)

Since the loading is evenly distributed, the central gable arch supports a 

loading acting on the walls & roof of the dark-shaded tributary area. This 

represents a uniform distributed load of (15 kN/m2)(4 m)=60 kN/m on the 

windward side and (5 kN/m2)(4 m)=20 kN/m on the suction side.
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Application of the Equations of Equilibrium 

Example 2.13 (Solution)

By applying equilibrium equations in the following sequence,

kN0.120

00.24045sin9.8445sin6.254  ;0

kN0.240

0)6()5.4)(45sin9.84()5.1)(45sin6.254(

)5.4(45cos)9.846.254()5.1)(60180(  ;0

 direction,  in the moments clockwise-antiWith 
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Application of the Equations of Equilibrium 

Example 2.13 (Solution)

kN0.300

045sin6.2540.120  ;0

kN0.75

045cos6.2541800.285  ;0
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HW 2-3

Find the reactions in the supports

Ans.  Bx=0

By=8.75 ton

Ay=6.25 ton

A

B
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HW 2-4

Find the reactions in the supports

Ans.  Bx=5.14 ton

By=7.86 ton

RA= 7.27 ton
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HW 2-5

Find the reactions in the supports

Ans.  Ay=5 ton

Ax= 0

By=13 ton

A
B
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HW 2-6

Find the reactions in the supports

Ans.  Ay=6.9 ton

Ax= 2 ton

By=13.1 ton

A

B
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HW 2-7

Determine the horizontal and vertical components of reaction at the pins A, B, and D of the three-member frame. The joint 

at C is fixed connected.

Ans.  Ay=10.167 KN

Ax= 1.75 KN

Bx=10.25 KN

By=1.167 KN

Dx=10.25 KN

Dy=14.8 KN
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CHAPTER 3:
ANALYSIS OF STATISCALLY DETERMINATE TRUSSES



Chapter Outline

3.1 Common Types of Trusses

3.2 Classification of Coplanar Trusses

3.3 The Method of Joints

3.4 Zero-Force Members

3.5 The Method of Sections

3.6 Compound Trusses

3.7 Complex Trusses

3.8 Space Trusses
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3.1
COMMON TYPES OF TRUSSES



Common Types of Trusses

▪ A truss is a structure composed of slender members joined together at their 

end points

▪ The joint connections are usually formed by bolting or welding the ends of 

the members to a common plate called a gusset plate

▪ Planar trusses lie in a single plane and is often used to support roofs and 

bridges
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Common Types of Trusses

▪ Roof Trusses

- They are often used as part of an industrial building frame

- Roof load is transmitted to the truss at the joints by means of a series of 

purlins

- To keep the frame rigid & thereby 

capable of resisting horizontal wind 

forces, knee braces are sometimes 

used at the supporting column
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Common Types of Trusses

▪ Roof Trusses
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Common Types of Trusses

▪ Bridge Trusses

- The load on the deck is first transmitted to stringers -> floor beams -> 

joints of supporting side truss

- The top & bottom cords of these side trusses are connected by top & 

bottom lateral bracing which resists lateral forces
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Common Types of Trusses

▪ Bridge Trusses

- Additional stability is provided by the portal 

& sway bracing

- In the case of a long 

span truss, a roller 

is provided at one 

end for thermal 

expansion
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Common Types of Trusses

▪ Assumptions for Design

- The members are joined together by smooth pins

- All loadings are applied at the joints

▪ Due to the 2 assumptions, each truss member acts as an axial force member
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3.2
CLASSIFICATION OF COPLANAR TRUSSES



Classification of Coplanar Trusses

▪ Simple , Compound or Complex Truss

▪ Simple Truss

- To prevent collapse, the framework of a truss must be rigid

- The simplest framework that is rigid or stable is a triangle
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Classification of Coplanar Trusses

▪ Simple Truss

- A simple truss is the basic “stable” triangle element is ABC

- The remainder of the joints D, E & F are established in alphabetical 

sequence

- Simple trusses do not have to consist entirely of triangles
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Classification of Coplanar Trusses

▪ Compound Truss

- It is formed by connecting 2 or more simple trusses together

- Often, this type of truss is used to support loads acting over a larger span 

as it is cheaper to construct a lighter compound truss than a heavier simple 

truss
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Classification of Coplanar Trusses

▪ Compound Truss

- Type 1

➢ The trusses may be connected by a common joint & bar

- Type 2

➢ The trusses may be joined by 3 bars

- Type 3

➢ The trusses may be joined where bars of a large simple truss, called the 

main truss, have been substituted by simple truss, called secondary 

trusses

14



Classification of Coplanar Trusses

▪ Compound Truss

15



Classification of Coplanar Trusses

▪ Complex Truss

- A complex truss is one that cannot be classified as being either simple or 

compound
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Classification of Coplanar Trusses

▪ Determinacy

- Total unknowns = forces in b no. of bars of the truss + total no. of external 

support reactions 

- Force system at each joint is coplanar & concurrent

- Rotational or moment equilibrium is automatically satisfied

17



Classification of Coplanar Trusses

▪ Determinacy

- Therefore only

- By comparing the total unknowns with the total no. of available equilibrium 

equations, we have:

ateindetermin statically   2

edeterminat statically   2

jrb

jrb

+

=+

 = = 0   and  0 yx FF
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Classification of Coplanar Trusses

▪ Stability

- If b + r < 2j => collapse

- A truss can be unstable if it is statically determinate or statically 

indeterminate 

- Stability will have to be determined either through inspection or by force 

analysis
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Classification of Coplanar Trusses

▪ Stability

- External Stability

➢A structure is externally unstable if all of its reactions are concurrent or 

parallel

➢ These trusses are externally unstable since the support reactions have 

lines of action that are either concurrent or parallel
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Classification of Coplanar Trusses

▪ Stability

- Internal Stability

➢ The internal stability can be checked by careful inspection of the 

arrangement of truss members

➢ If it can be determined that each joint is held fixed so that it cannot move 

in a “rigid body” sense with respect to the other joints, then the truss will 

be stable

➢A simple truss will always be internally stable

➢ If a truss is constructed so that it does not hold its joints in a fixed 

position, it will be unstable or have a “critical form”

21



Classification of Coplanar Trusses

▪ Stability

- Internal Stability

➢ To determine the internal stability of a compound truss, it is necessary to 

identify the way in which the simple truss are connected together

➢ The truss shown is unstable since the inner simple truss ABC is connected 

to DEF using 3 bars which are concurrent at point O
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Classification of Coplanar Trusses

▪ Stability

- Internal Stability

➢ Thus an external load can be applied at A, B or C & cause the truss to 

rotate slightly

➢ For complex truss, it may not be possible to tell by inspection if it is 

stable

➢ The instability of any form of truss may also be noticed by using a 

computer to solve the 2j simultaneous eqns for the joints of the truss

➢ If inconsistent results are obtained, the truss is unstable or have a critical 

form
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Classification of Coplanar Trusses 

Example 3.1

Classify each of the trusses as stable, unstable, statically determinate, or 

statically indeterminate. The trusses are subjected to arbitrary external 

loadings that are assumed to be known and can act anywhere on the trusses.
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Classification of Coplanar Trusses 

Example 3.1 (Solution)

For (a),

▪ Externally stable

▪ Reactions are not concurrent or parallel

▪ b = 19, r = 3, j = 11 

▪ b + r =2j = 22

▪ Truss is statically determinate

▪ By inspection, the truss is internally stable
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Classification of Coplanar Trusses 

Example 3.1 (Solution)

For (b),

▪ Externally stable

▪ b = 15, r = 4, j = 9

▪ b + r = 19 >2j = 18

▪ Truss is statically indeterminate

▪ By inspection, the truss is internally stable
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Classification of Coplanar Trusses 

Example 3.1 (Solution)

For (c),

▪ Externally stable

▪ b = 9, r = 3, j = 6

▪ b + r = 12 = 2j

▪ Truss is statically determinate

▪ By inspection, the truss is internally stable
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Classification of Coplanar Trusses 

Example 3.1 (Solution)

For (d),

▪ Externally stable

▪ b = 12, r = 3, j = 8

▪ b + r = 15 < 2j = 16

▪ The truss is internally unstable
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HW 3-1

Classify each of the following trusses as statically

determinate, statically indeterminate, or unstable. If

indeterminate, state its degree.
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HW 3-2
Classify each of the following trusses as statically determinate, indeterminate, or unstable. If indeterminate, state

its degree.
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HW 3-3

Classify each of the following trusses as stable, unstable, statically determinate, or statically 

indeterminate. If indeterminate state its degree.
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3.3
THE METHOD OF JOINTS



The Method of Joints

▪ Satisfying the equilibrium eqns for the forces exerted on the pin at each joint 

of the truss

▪ Applications of eqns yields 2 algebraic eqns that can be solved for the 2 

unknowns

39



The Method of Joints

▪ Always assume the unknown member forces acting on the joint’s free body 

diagram to be in tension

▪ Numerical solution of the equilibrium eqns will yield positive scalars for 

members in tension & negative for those in compression

▪ The correct sense of direction of an unknown member force can in many 

cases be determined by inspection

▪ A +ve answer indicates that the sense is correct, whereas a –ve answer 

indicates that the sense shown on the free-body diagram must be reversed
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The Method of Joints 

Example 3.2

Determine the force in each member of the roof truss shown in the

photo. The dimensions and loadings are shown. State whether the members 

are in tension or compression.
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The Method of Joints 

Example 3.2 (Solution)

Only the forces in half the members have to be determined as the truss is 

symmetric wrt both loading & geometry,
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The Method of Joints 

Example 3.2 (Solution)
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The Method of Joints 

Example 3.2 (Solution)
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3.4
ZERO-FORCE MEMBERS



Zero-Force Members

▪ Truss analysis using method of joints is greatly simplified if one is able to 

first determine those members that support no loading

▪ These zero-force members may be necessary for the stability of the truss 

during construction & to provide support if the applied loading is changed

▪ The zero-force members of a truss can generally be determined by 

inspection of the joints & they occur in 2 cases.
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Zero-Force Members

▪ Case 1

- The 2 members at joint C are connected together at a right angle & there 

is no external load on the joint

- The free-body diagram of joint C indicates that the force in each member 

must be zero in order to maintain equilibrium
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Zero-Force Members

▪ Case 2

- Zero-force members also occur at joints having a geometry as joint D

48



Zero-Force Members

▪ Case 2

- No external load acts on the joint, so a force summation in the y-direction 

which is perpendicular to the 2 collinear members requires that FDF = 0

- Using this result, FC is also a zero-force member, as indicated by the force 

analysis of joint F
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Zero-Force Members

Example 3.4

Using the method of joints, indicate all the members of the truss shown that 

have zero force.
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Zero-Force Members

Example 3.4 (Solution)

We have
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Zero-Force Members

Example 3.4 (Solution)
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3.5
THE METHOD OF SECTIONS



The Method of Sections

▪ If the forces in only a few members of a truss are to be found, the method of 

sections generally provide the most direct means of obtaining these forces

▪ This method consists of passing an imaginary section through the truss, thus 

cutting it into 2 parts

▪ Provided the entire truss is in equilibrium, each of the 2 parts must also be 

in equilibrium
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The Method of Sections

▪ The 3 eqns of equilibrium may be applied to either one of these 2 parts to 

determine the member forces at the “cut section”

▪ A decision must be made as to how to “cut” the truss

▪ In general, the section should pass through not more than 3 members in 

which the forces are unknown

▪ If the force in GC is to be determined, section aa will be appropriate

▪ Also, the member forces acting on one part of the truss are equal but 

opposite

▪ The 3 unknown member forces, FBC, FGC & FGF can be obtained by applying 

the 3 equilibrium eqns

55



The Method of Sections
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The Method of Sections

▪ When applying the equilibrium eqns, consider ways of writing the eqns to 

yield a direct solution for each of the unknowns, rather than to solve 

simultaneous eqns
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The Method of Sections 

Example 3.5

Determine the force in members GJ and CO of the roof truss shown

in the photo. The dimensions and loadings are shown. State whether the 

members are in tension or compression. The reactions at the supports have 

been calculated.
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The Method of Sections 

Example 3.5 (Solution)

The free-body diagram of member GJ can be obtained by considering the 

section aa,
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The Method of Sections 

Example 3.5 (Solution)

The free-body diagram of member CO can be obtained by considering the 

section bb,
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The Method of Sections 

Example 3.6

Determine the force in members GF and GD of the truss shown. State whether 

the members are in tension or compression.

The reactions at the supports have been calculated.
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The Method of Sections 

Example 3.6 (Solution)

The distance EO can be determined by proportional triangles or realizing that 

member GF drops vertically 4.5 – 3 = 1.5 m in 3 m. Hence, to drop 4.5 m 

from G the distance from C to O must be 9 m
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The Method of Sections 

Example 3.6 (Solution)

The angles FGD and FGF make with the horizontal are 

tan-1(4.5/3) = 56.3o

tan-1(4.5/9) = 26.6o
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The Method of Sections 

Example 3.6 (Solution)

kN(C)80.1

0)6(3.56sin)6(2)3(7

0 ve, as moments clockwise-antiWith 

.point   toslided is 

0

 applyingby directly  determined becan  in  force The

=

=++−

 =+

 =

GD

o

GD

O

GD

O

F

F

M

DF

M

GD

64



3.6
COMPOUND TRUSSES



Compound Trusses

▪ Compound trusses are formed by connecting two or more simple trusses 

together either by bars or by joints.

▪ It is best analyzed by applying both the method of joints and the method of 

sections.

66



The Method of Sections 

Example 3.8

Indicate how to analyze the compound truss as shown. The reactions at the 

supports have been calculated.
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The Method of Sections 

Example 3.8 (Solution)

The force in HG is determined as

kN(C)46.3
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The Method of Sections 

Example 3.8 (Solution)

The joints of this truss can be analyzed in the following sequence:

Joint A: Determine the force in AB and AI.

Joint H: Determine the force in HI and HJ.

Joint I: Determine the force in IJ and IB.

Joint B: Determine the force in BC and BJ.

Joint J: Determine the force in JC.
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HW 3-4

Determine the force in each member of the truss. State if the members are in tension or 

compression. Assume all members are pin connected.

Ans.
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HW 3-5

Determine the force in each member of the truss.

State if the members are in tension or compression.

Ans.
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HW 3-6

Determine the force in members GF, FC, and CD of the bridge truss. State if 

the members are in tension of compression. Assume all members are pin 

connected..

Ans.
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CHAPTER 4:
INTERNALLY LOADINGS DEVELOPED IN STRUCTURAL 
MEMBERS

1



4.1 Internal Loadings at a Specified Point

4.2 Shear and Moment Functions

4.3 Shear and Moment Diagrams for a Beam

4.4 Shear and Moment Diagrams for a Frame

4.5 Moment Diagrams Constructed by the Method of Superposition

Chapter Outline
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4.1
INTERNAL LOADINGS AT A SPECIFIED POINT

3



Internal Loadings at a Specified Point

▪ The internal load at a specified point in a member can be determined by 

using the method of sections

▪ This consists of:

- N, normal force

- V, shear force

- M, bending moment
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Internal Loadings at a Specified Point

• Sign convention

- Although the choice is arbitrary, the convention shown has been widely 

accepted in structural engineering
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Internal Loadings at a Specified Point

▪ Procedure for analysis

- Determine the support reactions before the member is “cut”

- If the member is part of a pin-connected structure, the pin reactions can 

be determine using the methods of section 2-5 

- Keep all distributed loadings, couple moments & forces acting on the 

member in their exact location

- Pass an imaginary section through the member, perpendicular to its axis 

at the point where the internal loading is to be determined

- Then draw a free-body diagram of the segment that has the least no. of 

loads on it

- Indicate the unknown resultants N, V & M acting in their positive 

directions
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Internal Loadings at a Specified Point

▪ Procedure for analysis

- Moments should be summed at the section about axes that pass through 

the centroid of the member’s cross-sectional area in order to eliminate N

& V, thereby solving M

- If the solution of the equilibrium eqn yields a quantity having a –ve 

magnitude, then the assumed directional sense of the quantity is opposite 

to that shown on the free-body diagram
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Internal Loadings at a Specified Point

Example 4.1

The building roof shown in the photo has a weight of 1.8 kN/m2 and is 

supported on 8-m long simply supported beams that are spaced 1 m

apart. Each beam as shown transmits its loading to two girders, located at 

the front and back of the building. Determine the internal shear and moment 

in the front girder at point C. Neglect the weight of the members.
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Internal Loadings at a Specified Point 

Example 4.1 (Solution)

Roof loading is transmitted to each 

beam as a one-way slab 

(L2/L1 =8>2)

Tributary load on each interior beam = 

(1.8 kN/m2)(1 m) = 1.8 kN/m

Reaction on girder = (1.8 kN/m)(8 

m)/2 = 7.2 kN

The two edge beams support 0.9 kN/m

Each column reaction is 

[2(3.6 kN) + 11(7.2 kN)]/2 = 43.2 kN
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HW 4-1

Determine the internal normal force, shear force, and bending moment at 
point C.

Ans. 
NC = 0; 
VC = 0; 
MC = -24.0 kN.m
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HW 4-2

Determine the internal normal force, shear force, and bending moment at 
point C.

Ans. 
NC = 0; 
VC = 10.5 kN; 
MC = 40.5 kN .m

12



4.2
SHEAR AND MOMENT FUNCTIONS

13



Shear and Moment Functions

• Design of beam requires detailed knowledge of the variations of V & M

• Internal N is generally not considered as:

- The loads applied to a beam act perpendicular to the beam’s axis

- For design purposes, a beam’s resistance to shear & bending is more 

important than its ability to resist normal force

- An exception is when it is subjected to compressive axial force where 

buckling may occur
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Shear and Moment Functions

• In general, the internal shear & moment functions will be discontinuous or 

their slope will be discontinuous at points where:

- The type or magnitude of the distributed load changes

- Concentrated forces or couple moments are applied

15



Shear and Moment Functions

▪ Procedure for Analysis

- Determine the support reactions on the beam

- Resolve all the external forces into components acting perpendicular & 

parallel to beam’s axis

- Specify separate coordinates x and associated origins, extending into:

➢Regions of the beam between concentrated forces and/or couple 

moments; or

➢Discontinuity of distributed loading

16



Shear and Moment Functions

▪ Procedure for Analysis

- Section the beam perpendicular to its axis at each distance x

- From the free-body diagram of one of the segments, determine the 

unknowns V & M

- On the free-body diagram, V & M should be shown acting in their +ve 

directions

- V is obtained from 

- M is obtained by 

0= yF

0= sM
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Shear and Moment Functions

▪ Procedure for Analysis

- The results can be checked by noting that:

w
dx

dV

V
dx

dM

=

=
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Shear and Moment Functions

Example 4.4

Determine the shear and moment in the beam shown as a function of x.
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Shear and Moment Functions

Example 4.4 (Solution)

Support reactions:

For the purpose of computing the support reactions, the distributed load is 

replaced by its resultant force of 135 kN. However, this resultant is not the 

actual load on the beam
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Shear and Moment Functions

Example 4.4 (Solution)

Shear & moment functions:

A free-body diagram of the beam segment of length x is shown. 

Note that the intensity of the triangular load at the section is found by 

proportion.

With the load intensity known, the resultant of the distributed load is found 

in the usual manner.
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Shear and Moment Functions

Example 4.4 (Solution)

Shear & moment functions:
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HW 4-3

Determine the internal shear and moment in the beam as a function of x.

Ans.
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HW 4-4

Determine the shear and moment in the beam as a function of x, 
where 2 m < x < 4 m.

Ans. 
V = 1.00 kN 
M = (x + 28) kN . m
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4.3
SHEAR AND MOMENT DIAGRAMS FOR A BEAM
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Shear and Moment Diagrams for a Beam

▪ If the variations of V & M are plotted, the graphs are termed the shear 

diagram and moment diagram

26



Shear and Moment Diagrams for a Beam

▪ Applying the eqn of equilibrium, we have:
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Shear and Moment Diagrams for a Beam

▪ Dividing by x & taking the limit as x →0, the previous eqns become:

▪ Integrating from one point to another between concentrated forces or 

couples in which case

V
dx

dM
xw

dx

dV
==    ,   )(

(x)dx   ,   w(x)dx  == VMV

28



Shear and Moment Diagrams for a Beam

▪ In order to account for concentrated force and moment, consider the free-

body diagrams of differential elements of the beam

▪ It is seen that force equilibrium requires the change in shear to be

▪ Moment equilibrium requires the change in moment to be:

FV −=

'MM =
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Shear and Moment Diagrams for a Beam 

Example 4.8

Draw the shear and moment diagrams for the beam.
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Shear and Moment Diagrams for a Beam 

Example 4.8 (Solution)

At end points:

x = 0, V = 30 kN

x = 9 m, V = -60 kN

The load w is –ve & linearly increasing, dV/dx=w

The point of zero shear can be found by using method of sections from a 

beam segment of length x,
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Shear and Moment Diagrams for a Beam 

Example 4.8 (Solution)

From the shear diagram, for 0<x<5.20 m, the value of shear is +ve but  so 

dM/dx=V is also +ve and 

At x = 5.20m, dM/dx=0

Likewise for 5.20 m<x<9 m, the shear & so the slope of the moment 

diagram are –ve 

Max M is at x = 5.20 m since dM/dx =V=0 
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Shear and Moment Diagrams for a Beam 

Example 4.8 (Solution)

We have

m•kN104

0
3

20.5
20.5

9

20.5
20

2

1
)20.5(30

0

:ve- asmoment  iseAnticlockw

=

=+























+−

=

M

M

M s

33



HW 4-5

Draw the shear and moment diagrams for the beam.

Ans.
Vmax=-50.5 KN
Mmax=-100 KN.m 
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HW 4-6

Draw the shear and moment diagrams for the beam.

Ans.
Vmax=-186.25 KN
Mmax=223.6 KN.m
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4.4
SHEAR AND MOMENT DIAGRAMS FOR A FRAME
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Shear and Moment Diagrams for a Frame

▪ A frame is composed of several connected members that are either fixed or 

pin connected at their ends.

▪ We will use the opposite sign convention and always draw the moment 

diagram positive on the compression side of the member.
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Shear and Moment Diagrams for a Frame

Example 4.13

Draw the moment diagram for the tapered frame shown. Assume the 

support at A is a roller and B is a pin.
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Shear and Moment Diagrams for a Frame

Example 4.13 (Solution)
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Shear and Moment Diagrams for a Frame

Example 4.13 (Solution)
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HW 4-7
Draw the shear and moment diagrams for each of the three members of the frame. 
Assume the frame is pin connected at A, C, and D and there is a fixed joint at B.

Ans.
Vmax=83 KN
Mmax=-180 KN.m
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HW 4-8
Draw the shear and moment diagrams for each member of the frame. The joint at B is 
fixed connected.

Ans.
Vmax = -13.75 kN; 
Mmax = 23.6 kN.m
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HW 4-9
Draw the shear and moment diagrams for each member of the frame. The members are 
pin connected at A, B, and C.

Ans.
Vmax = 9.00 kN;
Mmax = 16.0 kN.m
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4.5
MOMENT DIAGRAMS CONSTRUCTED BY THE METHOD OF 
SUPERPOSITION

44



Moment Diagrams Constructed by the Method of 
Superposition

▪ Beams are used primarily to resist bending stress, it is important that the 

moment diagram accompany the solution for their design.

▪ Most loadings on beams in structural analysis will be a combination of the 

loadings as shown.
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Moment Diagrams Constructed by the Method of 
Superposition
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▪ Following show the method of 

superposition for simply supported beam.

Moment Diagrams Constructed by the Method of 
Superposition
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HW 4-10
Draw the moment diagrams for the beam
using the method of superposition. Consider
the beam to be simply supported at A and B
as shown.

Draw the moment diagrams for the beam 
using the method of superposition. The beam 
is cantilevered from A.

HW 4-11

HW 4-12

Draw the moment diagrams for the beam 
using the method of superposition.
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CHAPTER 5:
CABLES AND ARCHES



Chapter Outline

5.1 Cables

5.2 Cable Subjected to Concentrated Loads

5.3 Cable Subjected to a Uniform Distributed Load

5.4 Arches

5.5 Three-Hinged Arch
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5.1
CABLES



Cables

▪ Assumptions when deriving the relations between force in cable & its slope

▪ Cable is perfectly flexible & inextensible

▪ Due to its flexibility, cable offers no resistance to shear or bending

▪ The force acting the cable is always tangent to the cable at points along its 

length
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5.2
CABLES SUBJECTED TO CONCENTRATED LOADS



Cable Subjected to Concentrated Loads 

▪ When a cable of negligible weight supports several concentrated loads, the 

cable takes the form of several straight line segments

▪ Each of the segment is subjected to a constant tensile force

▪  specifies the angle of the cord AB

▪ L = cable length
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Cable Subjected to Concentrated Loads 

▪ If L1, L2 & L3 and loads P1 & P2 are known, determine the 9 unknowns 

consisting of the tension in each of the 3 segments, the 4 components of 

reactions at A & B and the sags yC & yD

▪ For solutions, we write 2 eqns of equilibrium at each of 4 points A, B, C & D

▪ Total 8 eqns

▪ The last eqn comes from the geometry of the cable
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Cable Subjected to Concentrated Loads

Example 5.1

Determine the tension in each segment of the cable shown in Figure.

Also, what is the dimension h?
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Cable Subjected to Concentrated Loads

Example 5.1 (Solution)

By inspection, there are 
➔ 4 unknown external reactions (Ax, Ay, Dx and Dy)
➔ 3 unknown cable tensions

These unknowns and sag, h can be determined from available equilibrium 
eqns applied to points A through D.

A more direct approach to the solution is to recognize that the slope of cable 
CD is specified.
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Cable Subjected to Concentrated Loads

Example 5.1 (Solution)
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Cable Subjected to Concentrated Loads

Example 5.1 (Solution)
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HW 5-1

Cable ABCD supports the loading shown. Determine the maximum tension in the cable and the sag of 

point B.
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5.3
CABLES SUBJECTED TO A UNIFORM DISTRIBUTED LOAD



Cable Subjected to a Uniform Distributed Load 

▪ The x,y axes have their origin located at the lowest point on the cable such 

that the slope is zero at this point

▪ Since the tensile force in the cable changes continuously in both magnitude 

& direction along the cable’s length, this change is denoted by T
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Cable Subjected to a Uniform Distributed Load 

▪The distributed load is represented by its resultant force wox which acts at 

x/2 from point O

▪Applying eqns of equilibrium yields:
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Cable Subjected to a Uniform Distributed Load 

▪ Dividing each of these eqn by x and taking the limit as x →0, hence, y

→0 ,  →0 and T →0 , we obtain:
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o
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Cable Subjected to a Uniform Distributed Load 

▪ Integrating Eqn 1 where T = FH at x = 0, we have:

▪ Which indicates the horizontal component of force at any point along the 

cable remains constant

▪ Integrating Eqn 2 realizing that T sin  = 0 at x = 0, we have:

4eqn   cos HFT =

5eqn    sin xwT o=

17



Cable Subjected to a Uniform Distributed Load 

▪ Dividing Eqn 5 by Eqn 5.4 eliminates T

▪ Then using Eqn 3, we can obtain the slope at any point

▪ Performing a second integration with y = 0 at x = 0 yields 

7eqn     
2

2x
F

w
y

H

o=

6eqn     tan
H

o

F

xw

dx

dy
==
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Cable Subjected to a Uniform Distributed Load 

▪ This is the eqn of a parabola 

▪ The constant FH may be obtained by using the boundary 

condition y = h at x = L

▪ Thus

▪ Substituting into Eqn 7

9eqn     2

2
x

L

h
y =

8eqn      
2

2

h

Lw
F o

H =
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Cable Subjected to a Uniform Distributed Load 

▪ From Eqn 4, the max tension in the cable occurs when  is max, i.e. at x=L

▪ From Eqn 4 and 5

▪ Using Eqn 8 we can express Tmax in terms of wo

10eqn       )( 22

max LwFT oH +=

11eqn       )2/(1 2

max hLLwT o +=
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Cable Subjected to a Uniform Distributed Load 

▪ We have neglected the weight of the cable which is uniform along the length

▪ A cable subjected to its own weight will take the form of a catenary curve

▪ If the sag-to-span ratio is small, this curve closely approximates a parabolic 

shape

21



Cable Subjected to a Uniform Distributed Load

Example 5.2

The cable supports a girder which weighs 12 kN/m. Determine the tension in 

the cable at points A, B & C.

22



Cable Subjected to a Uniform Distributed Load

Example 5.2 (Solution)

The origin of the coordinate axes is established at point B, the lowest point on 
the cable where slope is zero, 

Assuming point C is located x’ from B we have:

(1)   
6

2

kN/m12

2

222 x
F

x
F

x
F

w
y

HHH

o ===

(2)   '0.1'
6

6 22 xFx
F

H
H

==
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Example 5.2 (Solution)

For point A,

Thus from eqn 2 and 1, we have: 

Cable Subjected to a Uniform Distributed Load

m43.12'0900'60'

)]'30([
'0.1

6
12

)]'30([
6

12

2

2

2

2

==−+

−−=

−−=

xxx

x
x

x
FH
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Example 5.2 (Solution)

At point A,

We have, 

Cable Subjected to a Uniform Distributed Load

o

A

x

A
dx

dy

x

79.53

366.1)57.17(7772.0tan

m57.17)43.1230(

57.17

−=

−=−==

−=−−=

−=





kN4.261
)79.53cos(

4.154

cos
=

−
==

o

A

H
A

F
T


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Example 5.2 (Solution)

At point B, x = 0

At point C, x = 12.43 m

Cable Subjected to a Uniform Distributed Load

kN4.154
0cos

4.154

cos

00tan
0

===

===
=

o

B

H
B

o

B

x

B

F
T

dx

dy





kN6.214
0.44cos

4.154

cos

0.44

9660.0)43.12(7772.0tan
43.12

===

=

===
=

o

C

H
C

o

C

x

C

F
T

dx

dy






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HW 5-2

Determine the maximum and minimum tension in the cable.

27



5.4
ARCHES



Arches

▪ An arch acts as inverted cable so it receives loading in compression

▪ Because of its rigidity, it must also resist some bending and shear depending 

upon how it is loaded & shaped

29



Arches

▪ Depending on its uses, several types of arches can be selected to support a 

loading

30



5.5
THREE-HINGED ARCH



▪ The third hinge is located at the crown & the supports are located at 

different elevations

▪ To determine the reactions at the supports, the arch is disassembled

Three-Hinged Arch

32



Three-Hinged Arch

33



Three-Hinged Arch

Example 5.4

The three-hinged open-spandrel arch bridge has a parabolic shape and 

supports a uniform load. Show that the parabolic arch is subjected only to 

axial compression at an intermediate point such as point D. Assume the load 

is uniformly transmitted to the arch ribs.

34



Example 5.4 (Solution)

Applying the eqns of equilibrium, we have:

Three-Hinged Arch

kN160

0)m20(kN320)m40(

0

ve, as momentsdirection  clockwise-antiWith 

:Arch Entire

=

=−

=

+

y

y

A

C

C

M
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Example 5.4 (Solution)

Three-Hinged Arch

0

0kN160kN160

0

kN1600

kN160

0)m10()m20(kN160)m10(kN160

0

ve, as momentsdirection  clockwise-antiWith 

:BCsegment Arch 

=

=+−

=+

==+

=

=−+−

=

+

y

y

y

xx

x

x

B

B

B

F
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C

C

M
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Example 5.4 (Solution)

A section of the arch taken through point D

Three-Hinged Arch

=

−=
−

==

−=−=

=

=

6.26

5.0
)20(

20
tan

:is Dat segment   theof slope The

m5.2)20/()10(10

m10

m10

2
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x
dx
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y
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Example 5.4 (Solution)

Three-Hinged Arch

0)m5.2(kN160)m5(kN80

0

:ve as moments clockwise-antiWith 

06.26cos6.26sinkN80

0

06.26sin6.26coskN160

0
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Three-Hinged Arch

Example 5.6

The three-hinged trussed arch supports the symmetric loading. Determine the 

required height of the joints B and D, so that the arch takes a funicular shape. 

Member HG is intended to carry no force.

39



Example 5.6 (Solution)

For a symmetric loading, the funicular shape for the arch must be parabolic as 

indicated by the dashed line. Here we must find the eqn which fits this shape.

With the x, y axes having an origin at C, the eqn is of the form of y = -cx2. To 

obtain the constant c, we require:

Three-Hinged Arch

m375.3m125.1m5.4

5.12(a) Fig From

m125.1)m3)(/m125.0(

Therefore,

/m125.0

)m6()m5.4(

1

2

2

=−=

−=−=

=

−=−

h

y

c

c

D
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HW 5-3

The three-hinged spandrel arch is subjected to the loading shown. Determine the internal moment in 

the arch at point D.
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CHAPTER 6:
INFLUENCE LINES FOR STATICALLY DETERMINATE 
STRUCTURES
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6.1 Influence Lines

6.2 Influence Lines for Beams

6.3 Qualitative Influence Lines

6.4 Influence Lines for Floor Girders

6.5 Influence Lines for Trusses

6.6 Maximum Influence at a Point due to a Series of Concentrated Loads

6.7 Absolute Maximum Shear and Moment

Chapter Outline
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6.1
INFLUENCE LINES

3



Influence Lines

▪ If a structure is subjected to a moving load, the variation of shear & bending 

moment is best described using the influence line

▪ One can tell at a glance, where the moving load should be placed on the 

structure so that it creates the greatest influence at a specified point

▪ The magnitude of the associated shear, moment or deflection at the point 

can then be calculated using the ordinates of the influence-line diagram

4
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6
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Influence Lines

▪One should be clear of the difference between Influence Lines & shear or 

moment diagram

▪ Influence line represent the effect of a moving load only at a specific point

▪Shear or moment diagrams represent the effect of fixed loads at all points 

along the axis of the member

▪Procedure for Analysis

- Tabulate Values 

- Influence-Line equations

8



Influence Lines

▪ Tabulate Values 

- Place a unit load at various locations, x, along the member

- At each location use statics to determine the value of function at the 

specified point

- If the influence line for a vertical force reaction at a point on a beam is to 

be constructed, consider the reaction to be +ve at the point when it acts 

upward on the beam

- If a shear or moment influence line is to be drawn for a point, take the 

shear or moment at the point as +ve according to the same sign 

convention used for drawing shear & moment diagram

- All statically determinate beams will have influence lines that consist of 

straight line segments

9



Influence Lines

▪ Influence-Line Eqns

- The influence line can also be constructed by placing the unit load at a 

variable position, x, on the member & then computing the value of R, V or 

M at the point as a function of x

- The eqns of the various line segments composing the influence line can be 

determined & plotted

10



Influence Lines

Example 6.1

Construct the influence line for the vertical reaction at A of the beam.

11



Example 6.1 (Solution)

Tabulate Values
A unit load is placed on the beam at each selected point x & the value of Ay is 
calculated by summing moments about B.

Influence Lines

12



Example 6.1 (Solution)

Tabulate Values

Influence Lines

13



Example 6.1 (Solution)

Influence-Line Equation

The reaction as a function of x can be determined from

Influence Lines

xA

xA

M

y

y

B

10

1
1

0)1)(10()10(

0

−=

=−+−

=
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Influence Lines

Example 6.5

Construct the influence line for the moment at C of the beam.

15



Example 6.5 (Solution)

Tabulate Values

At each selected position of the unit load, the value of MC is calculated using 

the method of sections.

Influence Lines
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Example 6.5 (Solution)

Influence-Line Equations

Influence Lines

m50for    
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HW 6-1
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6.2
INFLUENCE LINES FOR BEAMS

19



Influence Lines for Beams 

▪ Once the influence line for a function has been constructed, it will be 

possible to position live loads on the beam which will produce the max value 

of the function

▪ 2 types of loadings will be considered:

- Concentrated force

- Uniform load

20



Influence Lines for Beams 

▪ Concentrated force

- For any concentrated force, F acting on the beam, the value of the function 

can be found by multiplying the ordinate of the influence line at position x

by magnitude of F

- Consider Fig 6.7, influence line for Ay

- For unit load, Ay = ½

- For a force of F, Ay = (½) F

21



Influence Lines for Beams 

▪ Uniform load

- Each dx segment of this load creates a concentrated force of dF = w0dx

- If dF is located at x, where the influence-line ordinate is y, the value of the 

function is (dF)(y) = (w0dx)y

- The effect of all concentrated forces is determined by integrating over the 

entire length of the beam

22



Influence Lines for Beams 

▪ Uniform load

- Since            is equivalent to the area under the influence line, in general:

- value of the function caused by a uniform load = the area under the 

influence line x intensity of the uniform load

 = ydxwydxw oo

 ydx

23



Influence Lines for Beams 

Example 6.7

Determine the max +ve shear that can be developed at point C in the beam 

due to:

➔A concentrated moving load of 4 kN, and

➔A uniform moving load of 2 kN/m

24



Influence Lines for Beams

Example 6.7 (Solution)

Concentrated force

The max +ve positive shear at C will occur when the 4 kN force is located at    

x = 2.5 m.

The ordinate at this peak is +0.75, hence:

kNkNVC 3)4(75.0 ==
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Influence Lines for Beams

Example 6.7 (Solution)

Uniform load

The uniform moving load creates the max +ve influence for VC when the load 

acts on the beam between x = 2.5 m and x = 10 m

The magnitude of VC due to this loading is:

Total max shear at C:

kN625.5      

)kN/m2()75.0)(m5.2m10(
2

1

=









−=CV

kN625.8kN625.5kN3)( max =+=CV
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Example

27

The beam supports a distributed live load of 1.5 kN/m and single

concentrated load of 8 kN. The dead load is 2 kN/m. Determine

(a) the maximum positive moment at C,

(b) the maximum positive shear at C.



28

HW 6-2

A uniform live load of 4 kN/m and a single live concentrated

force of 6 kN are to be placed on the beam. The beam has a

weight of 2 kN/m. Determine

(a) the maximum vertical reaction at support B,

(b) The maximum negative moment at point B.

Assume the support at A is a pin and B is a roller.

Ans.
By +max=49.5 KN
MB -max=-45 KN.m



6.3
QUALITATIVE INFLUENCE LINES

29



Qualitative Influence Lines 

▪ The Müller-Breslau Principle states that the influence line for a function is to 

the same scale as the deflected shape of the beam when the beam is acted 

upon by the function

▪ If the shape of the influence line for the vertical reaction at A is to be 

determined, the pin is first replaced by a roller guide

30



Qualitative Influence Lines 

▪ When the +ve force Ay is applied at A, the beam deflects to the dashed 

position which rep the general shape of the influence line

31



Qualitative Influence Lines 

▪ If the shape of the influence line for shear at C is to be determined, the 

connection at C may be symbolized by a roller guide

▪ Applying a +ve shear force Vc to the beam at C & allowing the beam to 

deflect to the dashed position

32



Qualitative Influence Lines 

▪ If the shape of influence line for the moment at C is to be determined, an 

internal hinge or pin is placed at C

▪ Applying +ve moment Mc to the beam, the beam deflects to the dashed line 

33



Qualitative Influence Lines 

Example 6.9

For each beam sketch the influence line for the vertical reaction at A.

34



Qualitative Influence Lines 

Example 6.9

For each beam sketch the influence line for the vertical reaction at A.

35



HW 6-3

36

Draw the influence lines for (a) the moment at C,  (b) the 

reaction at B, and  (c) the shear at C. Assume A is pinned and 

B is a roller.

Draw the influence lines for (a) the vertical reaction at A, (b) 

the moment at A, and (c) the shear at B. Assume the support 

at A is fixed.

HW 6-4

HW 6-5

Draw the influence line for (a) the moment at B,

(b) the shear at C, and (c) the vertical reaction at B. The

support at A resists only a horizontal force and a

bending moment.



6.4
INFLUENCE LINES FOR FLOOR GIRDERS

37



▪ Floor loads are transmitted from slabs to floor beams then to side girders & 

finally supporting columns

Influence Lines for Floor Girders

38



▪ The influence line for a specified point on the girder can be determined using 

the same statics procedure

▪ In particular, the value for the internal moment in a girder panel will depend 

upon where point P is chosen for the influence line

▪ Magnitude of MP depends upon the point’s location from end of the girder

▪ Influence lines for shear in floor girders are specified for panels in the girder 

and not specific points along the girder

▪ This shear is known as girder shear

Influence Lines for Floor Girders

39



Influence Lines for Floor Girders

Example 6.13

Draw the influence line for the shear in panel CD of the floor girder.

40



Influence Lines for Floor Girders

Example 6.13 (solution)

The unit load is placed at each floor beam location & the shear in panel CD is 

calculated. Finally a segment of the girder is considered & the internal panel 

shear VCD is calculated.

41



42

A uniform live load of 1.8 kNm and a single concentrated live force of

4 kN are placed on the floor beams. Determine (a) the maximum

positive shear in panel BC of the girder and (b) the maximum moment

in the girder at G.

Example



43

HW 6-6

A uniform live load of 30 KN/m and a single concentrated live

force of 30 KN are placed on the floor beams. If the beams also

support a uniform dead load of 5.25 KN/m, determine (a) the

maximum positive shear in panel CD of the girder and (b) the

maximum negative moment in the girder at D. Assume the

support at C is a roller and E is a pin.

Ans.
V CD  +max= 82.9 KN
MD max=-62.6  KN.m



6.5
INFLUENCE LINES FOR TRUSSES
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▪ The loading on the bridge deck is transmitted to stringers which in turn 

transmit the loading to floor beams and then to joints along the bottom cord

▪ We can obtain the ordinate values of the influence line for a member by 

loading each joint along the deck with a unit load and then use the method 

of joints or method of sections to calculate the force in the member

Influence Lines for Trusses 

45



Influence Lines for Trusses 

Example 6.15

Draw the influence line for the force in member GB of the bridge truss.

46



Influence Lines for Trusses 

Example 6.15 (solution)

Each successive joint at the bottom cord is loaded with a unit load and the 

force in member GB is calculated using the method of sections.

Since the influence line extends over the entire span of truss, member GB is 

referred to as a primary member.

47



Influence Lines for Trusses 

Example 6.15 (solution)

This means that GB is subjected to a force regardless of where the bridge 

deck is loaded.

The point of zero force is determined by similar triangles.

48



Draw the influence line for the force in (a) member KJ and (b) member CJ.

HW 6-7
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6.6
MAXIMUM INFLUENCE AT A POINT DUE TO A SERIES OF 
CONCENTRATED LOADS

50



▪ The max effect caused by a live concentrated force is determined by 

multiplying the peak ordinate of the influence line by the magnitude of the 

force

▪ In some cases, e.g. wheel loadings, several concentrated loadings must be 

placed on structure

▪ Trial-and-error procedure can be used or a method that is based on the 

change in function that takes place as the load is moved

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

51



▪ Shear

- Consider the simply supported beam with associated influence line for 

shear at point C

- The max +ve shear at C is to be determined due to the series of 

concentrated loads moving from right to left

- Critical loading occurs when one of the loads is placed just to the right of C

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

52



▪ Shear

- By trial & error, each of three possible cases can therefore be investigated

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

kNV

kNV

kNV

C

C

C

25.11)75.0(18)125.0(18)0(5.4)(:3 Case

19.24)625.0(18)75.0(18)125.0(5.4)(:2 Case

63.23)5.0(18)625.0(18)75.0(5.4)(:1 Case

3

2

1

=+−+=

=++−=

=++=
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▪ Shear

- Case 2 yields the largest value for VC and therefore rep the critical loading

- Investigation of Case 3 is unnecessary since by inspection such an 

arrangement of loads would yield (VC)3 < (VC)2

- Trial-and-error can be tedious at times

- The critical position of the loads can be determined in a more direct 

manner by finding V which occurs when the loads are moved from Case 1 

to 2, then from Case 2 to 3

- As long as computed V is +ve, the new position will yield a larger shear

- Each movement is investigated until a –ve V is computed

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

 )( 12 xxPsV −=
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 
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▪ Shear

- If the load moves past a point where there is a discontinuity in the 

influence line, the change in shear is:

- Use of above eqn will be illustrated with 

- reference to the beam, loading & 

influence line for Vc shown

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

)( 12 yyPV −=

125.075.0Cat  jump

0833.0)9/(75.0)312/(75.0 slope,

=+=

==−=s
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▪ Shear

- Consider the loads moving 1.5 m

- When this occurs, the 4.5 kN load jumps down (-1) & all the loads move up 

the slope of the influence line

- This causes a change of shear

- Since          is +ve, Case 2 will yield a larger value for VC than case 1

- Since          is -ve, Case 2 is the position of the critical loading

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

kN563.0)5.1)(0833.0](18185.4[)1(5.421 +=+++−= −V

kN49.12)5.1)(0833.0](18185.4[)1(1832 −=+++−= −V

21−V

32−V
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▪ Moment

- Consider the beam, loading & influence line for the moment at point C

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

)( 12 xxPsM −=
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▪ Moment

- When the loads of Case 1 

are moved to Case 2, it is 

observed that the 9 kN load 

decreases  M1-2

- Likewise, the 18 kN and 

13.5 kN forces cause an 

increase of  M1-2

Maximum Influence at a Point due to a Series of 
Concentrated Loads 
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▪ Moment

- Since  M1-2 is +ve, we compute for loads moved from Cases 2 to 3

-  M1-2 -ve, the greatest moment at C will occur when the beam is loaded as 

shown in Case 2

Maximum Influence at a Point due to a Series of 
Concentrated Loads 
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▪ Moment

- The max moment at C is therefore,

Maximum Influence at a Point due to a Series of 
Concentrated Loads 

m•kN0.77)18(5.13)25.2(18)35.1(9)( max =++=CM
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 

Example 6.18

Determine the maximum positive shear created at point B in the beam due to 

the wheel loads of the moving truck.
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 

Example 6.18 (solution)

➔ 0.9 m movement of the 18 kN load

Imagine that the 18 kN load acts just to the right of point B so that we obtain 

its max +ve influence. 

Beam segment BC is 3 m long, the 45 kN load is not as yet on the beam. 

When the truck moves 0.9 m to the left, the 18 kN load jumps downward on 

the influence line 1 unit.
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 

Example 6.18 (solution)

Although the 45 kN load also moves forward 0.9 m, it is still not on the beam. 

Thus,

➔ 1.8 m movement of the 40.5 kN load

When the 40.5 kN load acts just to the right of B & the truck moves 1.8 m to 

the left, we have
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 

Example 6.18 (solution)

➔ 1.8 m movement of the 67.5 kN load

If the 67.5 kN load is positioned just to the right of B & then the truck moves 

1.8 m to the left, the 18 kN load moves only 0.3 m until it is off the beam.

Likewise, the 40.5 kN load moves only 1.2 m until it is off the beam

kN8.24        
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Maximum Influence at a Point due to a Series of 
Concentrated Loads 

Example 6.18 (solution)

➔ 1.8 m movement of the 67.5 kN load (cont’d)

Since VB is -ve, the correct position of the loads occur when 67.5 kN is just 

to the right of B.

In practice, one also has to consider motion of the truck from left to right & 

then choose the max value between these 2 situations.

kN8.33             

)2.0(45)5.0(5.67)2.0(5.40)05.0(18)( max

=

++−+−=BV
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Determine the maximum moment at C caused by the moving load.

HW 6-8

67

HW 6-9

Ans.
Mc +max=21 KN.m

Determine the maximum positive moment at point C on the single girder caused by 

the moving load.

Ans.
Mc +max=34 KN.m



6.7
ABSOLUTE MAXIMUM SHEAR AND MOMENT
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▪ A more general problem involves the determination of both the location of 

the point in beam & the position of the loading on the beam so that one can 

obtain the absolute max shear & moment caused by the loads

▪ Shear 

- For cantilevered beam, the absolute max shear will occur at a point just 

next to the fixed support

- For simply supported beams the absolute max shear will occur just next to 

one of the supports

Absolute Maximum Shear and Moment 
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▪ Moment

- The absolute max moment for a cantilevered beam occurs at a point where 

absolute max shear occurs

- The concentrated loads should be positioned at the far end of the beam

- For a simply supported beam, the critical position of the loads & the 

associated absolute max moment cannot, in general, be determined by 

inspection

- The position can be determined analytically

Absolute Maximum Shear and Moment 
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▪ Moment

- Consider a beam subjected to forces, F1, F2 & F3 

- The moment diagram for a series of concentrated forces consists of straight 

line segments having peaks at each force

- Assume the absolute max moment occurs under F2

- The position of the 3 loads on the beam will be specified by the dist x

measured from F2 to the beam’s centerline

Absolute Maximum Shear and Moment 
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▪ Moment

- To determine a specific value of x, first obtain the resultant force of the 

system FR & its distance measured from F2

- Moments are summed about B, yielding the beam’s left reaction Ay

Absolute Maximum Shear and Moment 
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▪ Moment

- If the beam is sectioned just to the left of F2, M2 under F2 is:

Absolute Maximum Shear and Moment 
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▪ Moment

- For max M2, we require:

Absolute Maximum Shear and Moment 
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▪ Moment

- Hence, we may conclude that the absolute max moment in a simply 

supported beam occurs under one of the concentrated forces such that this 

force is positioned on the beam so that it & the resultant force of the 

system are equidistant from the beam’s centerline

▪ Envelope of Max influence-line values

- An elementary way to proceed requires constructing influence lines for the 

shear or moment at selected points along the entire length of the beam & 

then computing the max shear or moment in the beam for each point

- These values when plotted yield an “envelope of maximums”, from which both 

the absolute maximum value of shear or moment and its location can be found.

Absolute Maximum Shear and Moment 
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HW 6-10

80

Determine the absolute maximum moment in the girder bridge due to the truck loading shown. 

The load is applied directly to the girder.

Ans.
M max=832.6 KN.m



CHAPTER 7:
APPROXIMATE ANALYSIS OF STATICALLY INDETERMINATE 
STRUCTURES
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Chapter Outline

7.1 Use of Approximate Methods

7.2 Trusses

7.3 Vertical Loads on Building Frames

7.4 Portal Frames and Trusses

7.5 Lateral Loads on Building Frames: Portal Method

7.6 Lateral Loads on Building Frames: Cantilever Method
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7.1
USE OF APPROXIMATE METHODS

3



Use of Approximate Methods

▪ The analysis when using a model must satisfy both the conditions of:

- Equilibrium

- Compatibility of displacements at joints

▪ For an initial design, member sizes are not known & statically indeterminate 

analysis cannot be done

▪ A simpler model, i.e. statically determinate analysis, must be developed

4



Use of Approximate Methods

▪ The analysis of this model is known as an approximate analysis

▪ The preliminary design of the members can be made

▪ After which, the more exact indeterminate analysis can be performed & the 

design refined

5



7.2
TRUSSES

6



Trusses

▪ The truss used for lateral bracing of a building is not considered a primary 

element

▪ It will therefore be analyzed using approximate methods

▪ In the case shown, the truss is indeterminate to the third degree

7



Trusses

▪ 3 assumptions must be made in order to reduce the truss to one that is 

statically determinate

▪ Assumptions may be made with regards to the following:

- When 1 diagonal in the panel is in tension, the corresponding cross 

diagonal will be in compression

▪ Two methods of analysis are generally acceptable:

▪ Method 1

- If the diagonals are intentionally designed to be long & slender, it is 

reasonable to assume they cannot support compression force

- Otherwise, they may easily buckle

- Hence, the compressive diagonal is assumed to be a zero-force member

8



Trusses

▪ Method 2

- If the diagonals are intended to be constructed from large rolled sections 

such as angles or channels, they may be equally capable of supporting a 

tensile & compressive force

- We will assume that tension & compression diagonals each carry half the 

panel shear

9



Trusses

Example 7.1

Determine (approximately) the forces in the members of the truss. The 

diagonals are to be designed to support both tensile and compressive forces, 

and therefore each is assumed to carry half the panel shear. The support 

reactions have been computed.

10



Trusses

Example 7.1 (Solution)

By inspection, the truss is statically indeterminate to the second degree. The 2 
assumptions require the tensile & compressive diagonals to carry equal forces.

For a vertical section through the left panel, we have:

kN(C)33.8 & kN(T)33.8
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Trusses

Example 7.1 (Solution)

With anti-clockwise moments as +ve:

From Joint A, Fig 7.2(c),
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Trusses

Example 7.1 (Solution)

A vertical section through the right panel is shown 

in Fig 7.2(d).

Furthermore, using the free body diagrams of joints 

D & E, Fig 7.2(e) & 7.2(f), show that

kN(T)67.6  ,kN(C)33.8

kN(C)67.6  ,kN(T)33.8
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HW 7-1

Determine (approximately) the force in each member of the truss. Assume the 

diagonals can support either a tensile or a compressive force.
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7.3
VERTICAL LOADS ON BUILDING FRAMES

15



Vertical Loads on Building Frames 

▪ Building frames often consist of girders that are rigidly connected to columns

▪ This is to allow the structure to better able to resist the effects of lateral 

forces

16



Vertical Loads on Building Frames 

▪ One technique would be to consider only the members within a localised 

region of the structure

▪ This is possible if the deflections of the members within the region caused 

little disturbance to the members outside the structure

▪ The approximate location of the points of inflection can be specified

▪ These points are subjected to zero moments

17



Vertical Loads on Building Frames 

▪ Assumptions for approximate analysis

- The column supports at A & B will each exert 3 reactions on the girder

- The girder will be statically indeterminate to the third degree

- 3 assumptions would be needed to perform an approximate analysis

18



Vertical Loads on Building Frames 

▪ Assumptions for approximate analysis

- If the columns are stiff, no rotation at A & B will occur

- However, if the column connections at A & B are very flexible, then zero 

moments will occur at the supports

19



Vertical Loads on Building Frames 

▪ Assumptions for approximate analysis

- In reality, the columns will provide some flexibility at the supports

- Therefore, point of zero moment occurs at the average point between the 

two extremes ➔ (0.21L+0) / 2 ≈ 0.1L from each support

20



Vertical Loads on Building Frames 

▪ Assumptions for approximate analysis

- In summary the 3 assumptions are incorporated:

➢ There is zero moment in the girder, 0.1L from the left support

➢ There is zero moment in the girder, 0.1L from the right support

➢ The girder does not support an axial force

21



Vertical Loads on Building Frames

Example 7.3

Determine (approximately) the moment at the joints E and C caused by 

members EF and CD of the building bent.
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Vertical Loads on Building Frames

Example 7.3 (Solution)

For an approximate analysis, the frame is modeled as shown. 

Note that the cantilevered spans supporting the center portion of the girder 

have a length of 0.1L = 0.5 m

Equilibrium requires end reactions of center portion = 32 kN

23



Vertical Loads on Building Frames

Example 7.3 (Solution)

Cantilevered spans are subjected to moment of:

This approximate moment with opposite direction acts on the joints at E & C.

m•kN18)5.0(32)25.0(8 =+=M
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Vertical Loads on Building Frames

Example

Determine (approximately) the internal moments at joints F and D of the 

frame.

25



HW 7-2

Determine (approximately) the internal moments at joints A and B of the 

frame

26

Ans.
MA = 4.86 kN.m
MB = 3.78 kN.m



7.4
PORTAL FRAMES AND TRUSSES
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Portal Frames and Trusses

▪ Portal frames are used to transfer horizontal forces applied at the top of 

frame to the foundation

▪ Portals can be pin supported, fixed supported or supported by partial fixity

28



Portal Frames and Trusses

▪ We can  analyse trussed portals using the same assumptions as those for 

simple portal frames

▪ For pin-supported columns, assume horizontal shear are equal

▪ For fixed-supported columns, assume horizontal reactions are equal and an 

point of inflection occurs on each column, midway between base of column & 

the lowest point of truss member connection to column

29



Portal Frames and Trusses

Example 7.4

Determine by approximate methods the forces acting in the members of the 

Warren portal.

30



Portal Frames and Trusses

Example 7.4 (Solution)

The truss portion B, C, F, G acts as a rigid unit

A point of inflection is assumed to exist at 7 m/2 = 3.5 m above A & I

Equal horizontal reactions act at the base of the column

Determine the reactions at the columns as follows:

➔Lower half of column

➔Upper half of column

m•kN70020530

:ve as moments clockwise-antiWith 

 M )(.;   M-M A ===
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kN5.270)8(5.5400

:ve as moments clockwise-antiWith 

 N N)(;   M J ==+−=

+
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Portal Frames and Trusses

Example 7.4 (Solution)

Using the method of sections, we can proceed to obtain the forces in members 

CD, BD & BH

kN(T)5.270)2(5.27)5.5(20)2(  0

kN(C)750)2()2(40)5.3(20  0

:ve as moments clockwise-antiWith 
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Portal Frames and Trusses

Example 7.4 (Solution)

Using these results we can find the force in each of the other truss members 

using method of joints

The results are summarized as

kN(T)9.38045sin9.3845sin    ;0

kN(C)200)45cos2(38.9-75    ;0

kN(C)9.38045sin9.3845sin    ;0
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HW 7-3

Determine (approximately) the force in each truss member of the portal 

frame. Also find the reactions at the fixed column supports A and B. 

Assume all members of the truss to be pin connected at their ends.

34



7.5
LATERAL LOADS ON BUILDING FRAMES:
PORTAL METHOD
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Lateral Loads on Building Frames: Portal Method 

▪ A building bent deflects in the same way as a portal frame

▪ Each bent of the frame can be considered as a series of portals

▪ The interior columns would represent the effect of 2 portal columns & would 

carry 2x the shear V as the exterior columns

36



Lateral Loads on Building Frames: Portal Method 

▪ The portal method for analyzing fixed supported building frames requires the 

following assumptions:

- A hinge is placed at the center of each girder

- A hinge is placed at the center of each column

- At a given floor level, the shear at the int column hinges is 2x that at the 

ext column hinges

▪ These assumptions provide an adequate reduction of the frame to one that is 

statically determinate and yet stable under loading

▪ This method is more suitable for buildings having low elevation and uniform 

framing

37



Lateral Loads on Building Frames: Portal Method

Example 7.5

Determine (approximately) the reactions at the base of the columns of the 

frame. Use the portal method of analysis.
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Lateral Loads on Building Frames: Portal Method

Example 7.5 (Solution)

Applying the first 2 assumptions of the portal method, we place hinges at the 

centers of the girders & columns of the frame.

A section through the column hinges at I, J, K & L yields the free body 

diagram. The third assumption regarding the column shear applies.

kN1066     ;0 ==−=+ VVFx
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Lateral Loads on Building Frames: Portal Method

Example 7.5 (Solution)

Using this result, we proceed to dismember the frame at the hinges & 

determine their reactions.

As a general rule, always start analysis at the corner or joint where the 

horizontal load is applied.

The free-body diagram of segment IBM is shown.

The 3 reactions components at the hinges are 

determined by applying

0   ;0   ;0 === yxM FFM
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Lateral Loads on Building Frames: Portal Method

Example 7.5 (Solution)

The adjacent segment MJN is analyzed next.

This is followed by segment NKO and OGL.

41



Example 7.5 (Solution)

Using these results, the free body diagram of the columns with their support 

reactions are shown.

Lateral Loads on Building Frames: Portal Method
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HW 7-4

Use the portal method of analysis and draw the moment diagram for girder 

FED.

43

Ans.



7.6
LATERAL LOADS ON BUILDING FRAMES:
CANTILEVER METHOD
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Lateral Loads on Building Frames: Cantilever Method 

▪ This method is based on the same action as a long cantilevered beam 

subjected to a transverse load

▪ This causes a bending stress that varies linearly from the beam’s neutral axis 

▪ In a similar manner, the lateral loads on a frame tends to tip the frame over 

or cause a rotation about a neutral axis lying in the horizontal plane that 

passes through the columns at each floor level
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Lateral Loads on Building Frames: Cantilever Method 

▪ To counter this, the axial forces in the columns will be tensile on one side of 

the neutral axis & compressive on the other side

▪ It is reasonable to assume this axial stress has a linear variation from the 

centroid of column areas or the neutral axis

▪ This method is appropriate if the frame is tall & slender or has columns with 

different cross-sectional areas
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Lateral Loads on Building Frames: Cantilever Method 

▪ In summary, the following assumptions apply for a fixed support frame

- A hinge is placed at the center of each girder

- A hinge is placed at the center of each column

- The axial stress in a column is proportional to its distance from the centroid 

of the cross-sectional areas of the columns at a given floor level

- Since stress = force per area, then in the case of equal cross-sectional 

areas, the force in a column is proportional to its distance from the centroid 

of column areas

▪ These assumptions reduce the frame to one that is both stable & statically 

determinate

47



Lateral Loads on Building Frames: Cantilever Method 

Example 7.7

Determine (approximately) the reactions at the base of the columns of the 

frame. The columns are assumed to have equal cross-sectional areas. Use the 

cantilever method of analysis.
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Lateral Loads on Building Frames: Cantilever Method 

Example 7.7 (Solution)

Hinges are placed at midpoints of the columns & girders. The locations of 

these points are indicated by the letters G through L.

The axial force in each column is approximate distance from this point.

A section through the hinges H and K at the top floor yields the free body 

diagram as shown.
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Lateral Loads on Building Frames: Cantilever Method 

Example 7.7 (Solution)

In a similar manner, using a section of the frame through the hinges at G & L, 

we have:
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Lateral Loads on Building Frames: Cantilever Method 

Example 7.7 (Solution)

Each part of the frame can be analyzed using the above 

results.

Beginning with the upper corner where the applied 

loading occurs, segment HCI.

Applying eqn of equilibrium yields the results for Hx, Ix

and Iy.

Using these results, segment IDK is analyzed, next 

followed by HJG & KJL.
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Lateral Loads on Building Frames: Cantilever Method 

Example 7.7 (Solution)

Finally, the bottom portions of the columns.
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HW 7-5

Use the cantilever method and determine (approximately) the reactions at A. 

All of the columns have the same cross-sectional area

53

Ans.
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